Hermitian - определение. Что такое Hermitian
DICLIB.COM
Языковые инструменты на ИИ
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Hermitian - определение


Hermitian Yang–Mills connection         
A HERMITIAN HOLOMORPHIC VECTOR BUNDLE OVER A KÄHLER MANIFOLD, WHOSE CHERN CONNECTION’S CURVATURE SATISFIES EINSTEIN’S EQUATIONS (I.E. EQUALS THE IDENTITY TIMES A CONSTANT)
Hermitian–Einstein metric; Einstein-Hermitian vector bundle; Hermitian-Einstein vector bundle; Hermitian–Einstein vector bundle; Einstein–Hermitian metric; Einstein-Hermitian metric; Hermitian-Einstein metric; Hermitian-Einstein connection; Hermitian–Einstein connection; Einstein-Hermitian connection; Einstein–Hermitian connection; Einstein–Hermitian vector bundle; Hermite-Einstein connection; Hermite–Einstein connection; Hermite-Einstein vector bundle; Hermite-Einstein metric; Hermitian Yang-Mills equations; Hermitian Yang-Mills connection; Hermitian Yang–Mills equation; Hermitian Yang-Mills equation; Hermitian Yang–Mills equations; Hermite–Einstein metric
In mathematics, and in particular gauge theory and complex geometry, a Hermitian Yang–Mills connection (or Hermite-Einstein connection) is a Chern connection associated to an inner product on a holomorphic vector bundle over a Kähler manifold that satisfies an analogue of Einstein's equations: namely, the contraction of the curvature 2-form of the connection with the Kähler form is required to be a constant times the identity transformation. Hermitian Yang–Mills connections are special examples of Yang–Mills connections, and are often called instantons.
Hermitian function         
COMPLEX FUNCTION WITH THE PROPERTY THAT ITS COMPLEX CONJUGATE IS EQUAL TO THE ORIGINAL FUNCTION WITH THE VARIABLE CHANGED IN SIGN
Hermitian symmetry
In mathematical analysis, a Hermitian function is a complex function with the property that its complex conjugate is equal to the original function with the variable changed in sign:
Hermitian matrix         
MATRIX EQUAL TO ITS CONJUGATE-TRANSPOSE
Hermitian matrices; Hermitian sequence; Hermitian vector; Hermite matrix; Self adjoint matrix; ⊹; Hermitian conjugate matrix
In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the -th row and -th column is equal to the complex conjugate of the element in the -th row and -th column, for all indices and :